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Abstract
Graph size generalization is hard for Message
passing neural networks (MPNNs). The graph-
level classification performance of MPNNs de-
grades across various graph sizes. Recently, the-
oretical studies reveal that a slow uncontrollable
convergence rate w.r.t. graph size could adversely
affect the size generalization. To address the
uncontrollable convergence rate caused by cor-
relations across nodes in the underlying dimen-
sional signal-generating space, we propose to use
Wasserstein barycenters as graph-level consensus
to combat node-level correlations. Methodologi-
cally, we propose a Wasserstein barycenter match-
ing (WBM) layer that represents an input graph by
Wasserstein distances between its MPNN-filtered
node embeddings versus some learned class-wise
barycenters. Theoretically, we show that the con-
vergence rate of an MPNN with a WBM layer is
controllable and independent to the dimensional-
ity of the signal-generating space. Thus MPNNs
with WBM layers are less susceptible to slow un-
controllable convergence rate and size variations.
Empirically, the WBM layer improves the size
generalization over vanilla MPNNs with different
backbones (e.g., GCN, GIN, and PNA) signifi-
cantly on real-world graph datasets.

1. Introduction
In recent years, graph neural networks (GNNs) (Bruna et al.,
2013; Defferrard et al., 2016; Kipf & Welling, 2017) have
become the de facto choice for graph-level classification.
Most GNNs used in practice can be reformulated into the
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common message passing neural network (MPNN) frame-
work (Gilmer et al., 2017). An MPNN is size generalizable
if it generalizes to testing graphs exhibiting a different aver-
age number of nodes from that of the training graphs. The
size generalizability of an MPNN is desirable. Because the
graph sizes can vary significantly, e.g., the size of traffic net-
works can be much larger in metropolitan areas than those
in rural areas, and labeling large graphs can be costly, e.g.,
in combinatorial optimization (Bengio et al., 2021).

Empirical studies show that size generalization is hard for
widely used MPNNs (Joshi et al., 2021; Gasteiger et al.,
2022). Though efforts are made to promote the size general-
ization of MPNNs (Yehudai et al., 2021; Bevilacqua et al.,
2021; Buffelli et al., 2022), there are still gaps between
empirical success and reasonable theoretical understanding.
Lately, based on a graphon (Lovász, 2012) random graph
model and Monte Carlo theory, Maskey et al. (2022) devel-
oped a tight generalization bound decreasing with the graph
size at a −1/2DX rate, where DX is the dimensionality of
the underlying metric space generating the graph signals.
The −1/2DX convergence rate takes root in correlations
across nodes entailed by the graph structure.

The rate at −1/2DX is undesirable for the size general-
ization of MPNNs. The underlying metric space is not
necessarily a low-dimensional manifold. When the sample
size and the average graph size are limited, and DX is large,
the slow convergence rate −1/2DX would inflate the gen-
eralization risk. In widely used MPNNs, there is a lack of
mechanisms to tackle the uncontrollable −1/2DX rate.

To address the uncontrollable −1/2Dχ rate that adversely
affects the size generalization, we propose to use the Wasser-
stein barycenters as a graph-level consensus to combat the
nodes-level consensus. Regarding the graphs as empirical
measures in the Wasserstein metric measure space, the nodes
across graphs of variant sizes can be registered (matched) by
the Wasserstein metric. Methodologically, we propose the
Wasserstein Barycenter Matching (WBM) layer for MPNNs
to improve size generalization with a controlled conver-
gence rate. Specifically, the WBM layer approximates the
class-wise empirical Wasserstein barycenters in end-to-end
learning. When applying a WBM layer to an MPNN, an
input graph is represented by the Wasserstein distances be-
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tween its MPNN-filtered node embeddings and each of the
learned class-wise barycenters. We theoretically justify the
proposed WBM layer with controllable convergence and
generalization properties. Denote by FL the output dimen-
sionality of the node embeddings of the MPNNs, we show
that the convergence rate of an MPNN with a WBM layer
is independent of the uncontrollable Dχ: −1/3 in the low-
dimensional regime and −2/FL in the high-dimensional
regime. Therefore with an appropriate FL, an MPNN with a
WBM layer is theoretically guaranteed to be less susceptible
to high underlying dimensionality and graph size variations,
when only small training graphs are accessible.

In summary, we highlight the contributions of this paper:
We address the adverse effect of uncontrollable convergence
rate on size generalization. We propose a WBM layer for
MPNNs, which employs Wasserstein barycenters as graph-
level consensus to combat the correlation across nodes. We
prove that an MPNN with a WBM layer enjoys a control-
lable and sharper convergence rate, in contrast to the un-
controllable rate of vanilla MPNNs. We demonstrate the
effectiveness of the WBM layer with extensive experiments.
With various MPNN backbones (GCN, GIN, and PNA), the
size generalization of MPNNs with WBM layers signifi-
cantly improves over the vanilla MPNNs and is competitive
with the heuristic model in Buffelli et al. (2022).

2. Related Work
Size generalization of MPNNs. Empirical studies notice
that the widely-used MPNNs are poor at size generaliza-
tion, e.g., in combinatorial optimization (Joshi et al., 2021)
and molecular biology (Gasteiger et al., 2022), the models
trained on small graphs exhibit a large performance gap
between testing sets of small graphs and sets of large graphs.
To improve the size generalization of MPNNs. Yehudai et al.
(2021) propose to minimize the discrepancy in the local
structures between small and large graphs. Their framework
is based on the assumption that either the testing graphs or
the domain labels are accessible during training, which is of-
ten prohibited in practice. Bevilacqua et al. (2021) assume a
complex causal model describing the generative process for
graphs of different sizes and thereof design a size-invariant
learning model. However, the size invariant model’s perfor-
mance decreases from synthetic graphs to real-world graphs,
suggesting the model is susceptible to model misspecifi-
cation. Aiming at a practical size-generalization method,
Buffelli et al. (2022) develop a heuristic regularized model
with impressive empirical performance. Their model simu-
lates size shift by graph coarsening and penalizes the shift
in the distribution of node embeddings. Howbeit the un-
derlying invariance assumption and scope of application
are unclear. In this paper, we aim at bridging empirical
effectiveness and reasonable theoretical grounding.

There is also a relevant line of literature that aims at improv-
ing the general out-of-distribution (OOD) generalization
on graphs. The graph augmentation methods combat the
distributional shifts by increasing the data diversity (Zhao
et al., 2021; Wang et al., 2021; Han et al., 2022). The invari-
ant representation methods propose to learn representations
invariant to distributional shifts (Sun & Saenko, 2016; Ar-
jovsky et al., 2019; Wu et al., 2021). There are also methods
modifying the training process to increase the models’ ro-
bustness (Sagawa et al., 2019; Krueger et al., 2021; Wu
et al., 2022a). Those methods usually impose strong as-
sumptions on the graph data-generating process to defend
various types of distributional shifts. While we assume in
this paper, the graphs are generated from the graphon ran-
dom graph model. Many graph models such as Erdős-Rényi
model (Erdős et al., 1960), stochastic block model (Holland
et al., 1983), and random geometric graphs (Penrose, 2003)
are special cases of graphons (Lovász, 2012). Therefore our
method is less susceptible to model misspecification.

Theoretical analysis of generalization for GNNs. From
various perspectives of model complexity, generalization
bounds are proposed for MPNNs, e.g., the bounds based on
VC-dimension (Scarselli et al., 2018), the data-dependent
bounds based on Rademacher complexity (Garg et al., 2020),
and PAC-Bayesian bounds (Liao et al., 2020). However, the
generalization bounds in those works increase with increas-
ing average graph size N , implying a looseness. Lately,
in the spirit of Monte Carlo theory, Maskey et al. (2022)
develop a generalization bound for MPNNs with a pool-
ing layer that decreases with increasing average graph size
N , at the rate −1/2(Dχ + 1). Such a rate is also discov-
ered in the earlier convergence analysis for spectral-based
GNNs (Keriven et al., 2020). We argue that the dimension-
ality of the underlying graph-signal-generating space metric
space Dχ is uncontrollable, as space χ is not necessarily a
low-dimensional manifold. The−1/2(Dχ+1) rate is unde-
sirable if only graphs of small sizes are accessible for train-
ing. We propose a Wasserstein barycenter matching (WBM)
layer for MPNNs. We demonstrate that the convergence rate
of an MPNN with a WBM layer is controllable: a constant
−1/3 rate in the low-dimensional regime, and a controllable
−2/FL in the high-dimensional regime, where FL is the
dimensionality of the last-layer node embeddings of MPNN.
There is also a notion of transferability quantifying bounds
between the GNN output of a finite graph versus its graphon
limit (Ruiz et al., 2020; Levie et al., 2021), which is similar
to our analysis conceptually. The transferability analysis
focuses on a sequence of a deterministic sequence of graphs,
while the generalization analysis focuses on random graphs.

Miscellaneous We mention two methodologically similar
methods for completeness. The OT-GNN model (Chen
et al., 2020) represents an input graph by the Wasserstein
distances between node embeddings versus some learned
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templates. The TFGW model (Vincent-Cuaz et al., 2022) ex-
tends OT-GNN by considering a trade-off between Wasser-
stein distance across nodes and Gromov-Wasserstein dis-
tance (Mémoli, 2011) across adjacency matrices. We high-
light three differences: (1) The learned graph templates in
OT-GNN and TFGW are not required to be the mean of
the data cluster. While our Wasserstein barycenters are re-
lated to particular classes. (2) The MPNNs in OT-GNN and
TFGW are seen as optional pre-processing units for graph
signals. While we regard the proposed MPNN layer as a sub-
stitution for the pooling layer. (3) The OT-GNN and TFGW
are designed for general graph classification. While our
WBM layer is designed specifically for size generalization.

Wasserstein barycenters (Agueh & Carlier, 2011) are ap-
pealing, as empirical barycenters enjoy a guaranteed conver-
gence in the Wasserstein space (Le Gouic et al., 2022). Be-
sides, the Wasserstein barycenter is able to take into account
the underlying geometry of the measures that a Euclidean
barycenter cannot (Backhoff-Veraguas et al., 2022).

3. Preliminaries
As a starting point for theoretical analysis, we fol-
low Keriven et al. (2020) and consider graphs and graph
MPNNs as discretizations of continuous graphon random
graph models and continuous graphon MPNNs, respectively.
In this section, we introduce the relative concepts.

An N -node weighted feature graph (graph for short) is a
tuple G = (V,E,A, f), where V = {1, . . . , N} is the node
set and E = {(i, j)} ⊂ V × V is the edge set. The matrix
A = {aij}i,j is the weight matrix of G, with aij ∈ (0, 1]
if the edge (i, j) ∈ E and aij = 0 if (i, j) /∈ E. A graph
signal is defined as the function1 f : V → RF mapping
each node to its F ∈ N dimensional signal in RF . We abuse
notations that f also denotes the graph signal matrix of an
N -node graph, i.e., f = (f1, . . . , fN )⊤ ∈ RN×F , where
fi ∈ RF is the graph signal evaluated at node i.

The graphs can be viewed as discretizations of a continuous
graphon RGM (cf. Def. 3.2). Firstly, we define graphons.
Definition 3.1 (graphon Lovász (2012)). Given a metric
measure space Ξ = (χ, d, µ), a graphon is a bivariate mea-
surable mapping A : χ× χ→ [0, 1]. The sets of points in
the metric space V ⊂ χ are sets of graph nodes and the cor-
responding images of the mapping A are the graph weight
matrices, i.e., A = A|V : V × V → [0, 1].

We then generalize the notion of graph signals f of a graph G
by formally introducing the graphon random graph model.

Definition 3.2 (graphon RGM Keriven et al. (2020)). Given
a space Ξ = (χ, d, µ), a graphon random graph model

1Conventionally, a graph signal is a scalar-valued function (Or-
tega et al., 2018), with F signals in the multi-dimensional setting.

(graphon RGM) is a pair of measurable functions (A, f),
where A is the graphon in Def. 3.1 and f : χ → RF

is a metric-space signal. An N -nodes random weighted
feature graph (V,A, f) is defined by sampling N i.i.d. ran-
dom points {X1, . . . , XN} = V from χ according to mea-
sure µ. The weight matrix A = {aij}i,j is given by
aij := A(Xi, Xj) for i, j ∈ {1, . . . , N}. The graph signal
at node i is defined by fi := f(Xi). We say that the random
graph (V,A, f) is sampled from the graphon A, and denote
(A, f) ∼ (A, f), where f = (f1, . . . , fN )⊤.

With a graphon RGM, we may extend concepts of a graph
to their continuous counterparts. Given a graph with weight
matrix A = {aij}i,j , the degree of the node i is defined by
di :=

∑N
j=1 aij . Given a graphon A on space (χ, d, µ), the

kernel degree of A at s ∈ χ is dA(s) :=
∫
χ
A(s, t)dµ(t).

Similar to the relationship between discrete random graphs
and continuous graphon RGMs, we may also extend graph
MPNNs (cf. Def. 3.4) to graphon MPNNs (cf. Def. 3.5),
by applying MPNNs to random graphs and graphon RGMs,
respectively. We formalize an MPNN as follows.

Definition 3.3 (message passing neural networks). We de-
fine an L-layer MPNN Θ as a sequence of functions,

Θ
def.
= ({Φ(l),Ψ(l)}Ll=1), (1)

where Φ(l) : R2Fl−1 → RHl−1 and Ψ(l) : RFl−1+Hl−1 →
RFl are called message and update functions, respectively,
with Fl being the feature dimension of layer l and F0 = F
in convention. The functions {Φ(l)}Ll=1 and {Ψ(l)}Ll=1 are
usually parameterized by multi-layer perceptrons (MLPs).

Taking instantiations of random graphs as inputs, the graph
MPNN is the mapping that maps the graph signals of graph
nodes to the corresponding node embeddings.
Definition 3.4 (graph message passing neural networks).
Given an MPNN Θ, a space Ξ and a random graph
(A, f), a graph MPNN ΘA(f) is defined as the mapping
ΘA(f) : RN×F → RN×FL , f 7→ f(L) = (f(L)

1 , . . . , f(L)
N )⊤.

Let f(0) = f be the initial signal, the node embeddings
f(l) ∈ RN×Fl at layer l = 1, . . . , L are iteratively defined

m(l)
i

def.
=

N∑
j=1

aij

di
Φ(l)(f(l−1)

i , f(l−1)
j ), {message passing} (2)

f(l)i

def.
= Ψ(l)(f(l−1)

i ,m(l)
i ). {message updating} (3)

The graphon MPNN extends graph MPNN by replacing
(A, f) by its continuous counterpart (A, f).
Definition 3.5 (graphon message passing neural networks).
Given an L-layer MPNN Θ, a space Ξ and a graphon RGM
(A, f), a graphon MPNN ΘA(f) is defined as the mapping
ΘA(f) : L

2(χ) → L2(χ), f 7→ f (L). A graphon MPNN
maps a metric-space signal to another signal. With initial
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input f (0) = f : χ → RF , the metric-space signal f (l) :
χ→ RFl at layer l = 1, . . . , L is iteratively defined as

m(l)(s)
def.
=

∫
χ

A(s, t)

dA(s)
Φ(l)(f (l−1)(s), f (l−1)(t))dµ(t), (4)

f (l)(s)
def.
= Ψ(l)(f (l−1)(s),m(l)(s)). (5)

The m(l)(s) in Eq.(4) and f (l)(s) in Eq.(5) can be viewed
as the continuous version of message passing and updat-
ing in Eq.(2) and Eq.(3), respectively. The graphon MPNN
ΘA(f) : χ → RFL in Def. 3.5 can be viewed as the con-
tinuous version of the graph MPNN ΘA(f) ∈ RN×FL in
Def. 3.4 for a random graph (A, f) ∼ (A, f)2.

4. Method
In this section, we first introduce classification task and size
generalization in Sect. 4.1. We emphasize the impact of
graph size on the generalization for MPNNs with pooling
layers (cf. Def. 4.1) by quoting the result from Maskey et al.
(2022) (cf. Thm. 4.2). Then we formalize the Wasserstein
Barycenter Matching layer and MPNNs with WBM layers
(cf. Def. 4.6) in Sect. 4.2. Finally, we discuss the conver-
gence (cf. Thm. 4.9) and generalization (cf. Thm. 4.10) of
an MPNN with a WBM layer in Sect 4.3.

4.1. Problem Formulation and Analysis

Data generation. In a C-class graph-level classification
task, we are provided with a training dataset S = {xk =
(Ak, fk), yk}nk=1 consisting of n graph instances. Each in-
stance in S is from a unique class from {1, . . . , C}. We as-
sume that graph class j is associated with a metric measure
space (χj , dj , µj) and a graphon RGM (Aj , f j) for j ∈
{1, . . . , C}. The instances in set S are assumed to be i.i.d.
drawn from a probabilistic measure µG :=

∑C
j=1 h

jµGj
,

with hj := P (y = j) for j = 1, . . . , C denoting the proba-
bility of an instance sampled from the class j. For simplicity
of exposition, we assume that all the graphs in the training
dataset are N -nodes graphs. The measure of a measurable
N -element set V = {X1, . . . , XN} ⊂ (χj)N is defined
as µGj

(V ) :=
∏N

i=1 µ
j(Xi). Therefore sampling one N -

node graph instance (x, y) w.r.t. measure µG can be viewed
as choosing a class y ∈ {1, . . . , C} w.r.t. the simplex
(h1, . . . , hC) first, then a random graph (A, f) ∼ (Ay, f y)
is drawn from the space χy w.r.t. the measure (µy)N .

The goal of classification tasks is to minimize the generaliza-
tion risk (risk for short) Rexp(Θ) := E(x,y)∼µG [ℓ(Θ(x), y)]
for a loss function3 ℓ. Explicit computation of Rexp(Θ) is
often intractable. In practice, in an empirical risk minimiza-

2We use ΘA(f) to denote the mapping itself or thereof image
interchangeably, whenever it is clear from the context.

3Conventionally the loss function ℓ is taken as a fixed function,
whereas we integrate some end-to-end learnable parameters (e.g.,

tion (ERM) (Vapnik, 1999) framework, one computes the
empirical risk RS

emp(Θ) := 1
n

∑n
k=1 ℓ(Θ(xk), yk), based

on the training set S = {xk = (Ak, fk), yk}nk=1. Ideally,
the gap between the empirical risks and the expected risk
|R̂S

emp(Θ)−Rexp(Θ)| should be small with a high probabil-
ity for moderate sample size n. Meanwhile, if the instances
in sets S and T = {(Ak, f′k), y′k}n

′

k=1 are i.i.d. and n, n′

satisfying the sample complexity required by ERM, the em-
pirical risk gap |R̂S

emp(Θ)− R̂T
emp(Θ)| should be small to

guarantee testing performance on the testing set T .

Size generalizability across graph sets S and T is not guar-
anteed for n, n′ satisfying ERM sample complexity when
the graph sizes vary from S to T , denoted by NS ̸= NT . In
other words, the empirical risk gap |R̂S

emp(Θ)− R̂T
emp(Θ)|

could be large. The NS-nodes instances in S and NT -nodes
instances in T are non-i.i.d. Recalling the generating pro-
cess, the NS-nodes (NT -nodes resp.) graphs are sampled
w.r.t. the product measure (µj)NS ((µj)NT resp.). More
importantly, the stochastic sampling procedure for N nodes
in each graph inflates the usual ERM sample complexity
that depends only on sample size n to stabilize the learning.

Taking the stochasticity of graph nodes into account, Maskey
et al. (2022) quantify the impact of graph size on the gen-
eralization of MPNNs with an average pooling layer (cf.
Thm. 4.2). The function of the pooling layer converts the
matrix of node embeddings ΘA(f) ∈ RN×FL to a vector-
ized graph representation for graph-level classification.
Definition 4.1 (pooling layer of MPNNs). Given an MPNN
Θ, the average pooling layer over nodes of a random graph
(A, f) ∼ (A, f) for a graph MPNN in Def. 3.4 and the
average pooling layer for a graphon MPNN in Def. 3.5 are

ΘP
A(f)

def.
= 1/N(ΘA(f))⊤1N , {graph MPNN pooling} (6)

ΘP
A(f)

def.
=

∫
χ

ΘA(f)(s)dµ. {graphon MPNN pooling} (7)

We rehearse a simplified Thm.3.3 in Maskey et al. (2022).
Theorem 4.2 (generalization of MPNNs with a pooling
layer, Thm3.3 Maskey et al. (2022)). Given an MPNN Θ, a
loss function ℓ and a set of N -nodes graphs S ∼ µn

G . Under
regularity assumptions, there exists a constant B such that

E
S∼µn

G

[(
R̂emp(Θ

P
A)−Rexp(Θ

P
A)
)2]

≤ 8∥ℓ∥2∞π2C

n
+

BL2
ℓ2

CC

n

∑
j

hj(∥f j∥∞ + L2
fj )α(N,Dχj ), where

(8)

α(N,Dχj ) =
1

N
+

1 + log(N)

N
1/(D

χj+1)
+O(N

3(L−1)
2 /eN ). (9)

In Eq.(8), Lℓ and Lfj are Lipschitz constants of loss ℓ and
metric-space signal f j , respectively. The Dχj is the dimen-
sion of the underlying space χj . The regularity assumptions
are specified in the Appx. A.

the cross-entropy loss composed on softmax, making ℓ Lipschitz
continuous) in ℓ to isolate the MPNN Θ for ease of exposition.
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The generalization upper bound for MPNNs with a pooling
layer in Thm. 4.2 consists of two terms. The first term
8∥ℓ∥2∞π2C/n is much smaller than the second term for
typical neural networks. For a fixed sample size n and
model complexity, the upper bound in Eq.(8) is dominated
by the O(log(N)N−1/(Dχ+1)) in the second term.

Given an MPNN Θ with a pooling layer, suppose that in-
stances of an NS-nodes graph set S and an NT -nodes graph
set T are drawn from the same graphon RGM µG , then we
have a quantitative assessment on the size generalizability.
Proposition 4.3 (size generalizability of a graph MPNN
with a pooling layer). Suppose the conditions of Thm. 4.2
are satisfied, then for a set of NS-nodes graphs S ∼ µn

G and
a set of NT -nodes graphs T ∼ µn′

G , fixing n, n′ we have∣∣∣∣∣ E
S∼µn

G
[R̂emp(Θ

P
A)]− E

T ∼µn′
G

[R̂emp(Θ
P
A)]

∣∣∣∣∣ ≤
∑
j

O

 log(NS)
1/2

N
−1/2(D

χj+1)

S

+O

 log(NT )
1/2

N
−1/2(D

χj+1)

T

 (10)

Proof. The proof of Prop. 4.3 is straightforward according
to Thm. 4.2 and the triangle inequality.

The −1/2DX j rate roots in the correlations across nodes
entailed by the graph structure. Because not every metric
spaces χj is necessarily a low-dimensional manifold, we are
urged to develop a mechanism for MPNNs to alleviate the
slow rate caused by a possibly large uncontrollable DX j .

4.2. The Wasserstein Barycenter Matching Layer

We propose a Wasserstein Barycenter Matching (WBM)
layer that exploits Wasserstein barycenters in the Wasser-
stein space as graph-level consensus to combat the adverse
effect caused by the nodes-level correlation. We introduce
the formalization of the WBM layer in this subsection. The
controllable convergence rate will be discussed in Sect. 4.3.
We start with introducing the p-Wasserstein space.

Definition 4.4 (p-Wasserstein space Ambrosio et al. (2005)).
Given p ∈ [1,+∞) and a closed convex set Ω ∈ RD. Let
Pp(Ω) be the set of probability measures over Ω with finite
p-order moments. The metric space Wp(Ω) = (Pp(Ω),Wp)
is called the p-Wasserstein space, with p-Wasserstein dis-
tance between measures ρ, ν ∈ Pp(Ω) defined as

Wp(ρ, ν)
def.
=

(
inf

π∈Π(ρ,ν)

∫
Ω2

∥s− t∥2dπ(s, t)
)1/p

, (11)

where Π(ρ, ν) is the set of couplings on RD × RD with ρ
and ν as marginals, and ∥ · ∥ is the Euclidean norm.

The Wasserstein barycenter is a natural extension of the
mean of probability distributions on the Wasserstein space.

Definition 4.5 (Wasserstein barycenter Agueh & Carlier
(2011)). For p ∈ [1,+∞)), the p-Wasserstein barycenter
bp(P) of P ∈ Pp(Wp(Ω)) is defined as follows,

bp(P)
def.
= argmin

ρ∈Pp(RD)

E
ν∼P

[Wp
p (ρ, ν)]. (12)

The (uniform-weighted) empirical p-Wasserstein barycenter
of the empirical distribution P̂n = 1/n

∑n
k=1 δνk

is

b̂p({ν1, . . . , νn})
def.
= argmin

ρ∈Pp(RD)

1

n

n∑
k=1

Wp
p (ρ, νk). (13)

Throughout the paper, we assume the existence of at least
one Wasserstein barycenter per class, which is shown to
hold in reasonable scenarios (Afsari, 2011).

Similar to the pooling layer in Def. 4.1, a WBM layer at-
taches graph MPNNs and vectorizes the matrix of node
embeddings ΘA(f) ∈ RN×FL . Given an MPNN Θ, the
WBM layer collects node embeddings of an input graph and
represents the graph by distances between the graph-wise
measure and class-wise empirical Wasserstein barycenters.

Concretely, let {(χj , dj , µj)}Cj=1 be the metric measure
spaces of different graph classes. Suppose that S = {xk =
(Ak, fk), yk}nk=1 is a dataset of N -nodes graphs drawn w.r.t.
measure µG =

∑C
j=1 h

jµGj
. Let R be the same-class equiv-

alence relation on S, suppose the quotient set of R on S
denoted as S/R = {S1, . . . ,SC}. In other words, S can be
partitioned into the disjoint union: S =

⊔C
j=1 Sj . Denote

by nj the cardinality of the j class set Sj with
∑C

j=1 nj = n.
Denote by Θ#µ the push-forward measure of a measure µ

by a measurable MPNN Θ. For a random graph (Aj
k, fjk) ∼

(Aj , f j) from class j, we consider the push-forward of the
measure µ̂j

k = 1/N
∑N

i=1 δXj
k,i

by the composite mapping

ΘAj
k
(fjk) ◦ f

j
k , denoted by ν̂jk = (ΘAj

k
(fjk) ◦ f

j
k)#µ̂

j
k.

In contrast to the parameter-free average pooling layer, for
each class j ∈ {1, . . . , C}, the WBM layer estimates the
empirical 2-Wasserstein barycenter of the empirical distri-
bution P̂j

nj
= 1/nj

∑nj

k=1 δν̂j
k
, i.e.,

b̂2(Sj)
def.
= argmin

ρ∈P2(RFL )

1

nj

nj∑
k=1

W2
2 (ρ, ν̂

j
k). (14)

In practice, we estimate b̂2(Sj) for class j ∈ {1, . . . , C}
with other neural network parameters in the end-to-end
learning process with the following optimization objective,

ℓWBM
def.
=

C∑
j=1

1

nj

nj∑
k=1

W2
2 (b̂2(Sj), ν̂

j
k). (15)

Finally, we formalize the MPNNs with a WBM layer, which
represents each input graph by 2-Wasserstein distances be-
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Figure 1. The framework of an MPNN with a WBM layer.

tween the graph-wise (empirical) measure and class-wise
empirical Wasserstein barycenters {b̂2(Sj)}Cj=1.

Definition 4.6 (MPNNs with a WBM layer). Given an
MPNN Θ and a set of graphs S = {(Ak, fk), yk}nk=1, the
graph MPNN in Def. 3.4 with a WBM layer ΘW

A (f) and
graphon MPNN in Def. 3.5 with a WBM layer ΘW

A (f) for
an N -nodes random graph (A, f) ∼ (A, f) are

ΘW
A (f) def.

=
(
W2(b̂2(S1), ν̂), . . . ,W2(b̂2(SC), ν̂)

)
, (16)

ΘW
A (f)

def.
=
(
W2(b

1
2, ν), . . . ,W2(b

j
2, ν)

)
, (17)

where ν̂ in Eq.(16) is the push-forward measure of µ̂ =
1/N

∑N
i=1 δXj

i
by the composite mapping ΘA(f) ◦ f , i.e.,

ν̂ = (ΘA(f)◦f)#µ̂, and ν in Eq.(17) is the push-forward of
µ by the composition ΘA(f) ◦ f , i.e., ν = (ΘA(f) ◦ f)#µ.
In particular, denoting νj = (ΘA(f) ◦ f)#µj , {bj2}Cj=1 in
Eq.(17) are the graphon extensions of empirical Wasserstein
barycenters {b̂2(Sj)}Cj=1, we have the following equality

bj2
def.
= argmin

ρ∈Pq(RFL )

1

nj

nj∑
k=1

W2
2 (ρ, ν

j
k) = νj . (18)

The graph classifier of an MPNN with a WBM layer is
learned by optimizing the cross-entropy loss with the WBM
loss in Eq.(15) in a common end-to-end learning fashion.

We illustrate the framework of an MPNN with a WBM layer
in Figure 1.The detailed learning algorithm of an MPNN
with a WBM layer is in Appx. H.
Remark 4.7. For ease of exposition, we assume that each
graph class is related to a single graphon. It is reasonable
that graphs sampled from the same graphon RGM are from
the same class, but not necessarily vice versa. In practice,
we may assume a hyperparameter M accommodating the
number of graphons corresponding to each class. When
M > 1, we actually construct an extended probabilistic
measure reads µG =

∑C
j=1 P (y = j)/M

∑M
m=1 µGjm

,
where {µGjm

}Mm=1 corresponds to the M different graphon
RGMs of class j. We may think of the measure correspond-
ing to each class as a mixture of M components with the
same weight. We then feed the vector of Wasserstein dis-
tances to a non-linear MLP.
Remark 4.8. The graph size in real-world datasets possi-
bly varies. The N -nodes graph assumption is placed for

ease of illustration and theoretical analysis. In practice,
the proposed WBM layer can process graphs of finite size,
by considering the push-forward measures of measures
{µ̂k = 1/Nk

∑Nk

i=1 δXk,i
}nk=1 for varying Nks.

4.3. Theoretical Analysis on the MPNNs with WBM

The graph MPNN with a WBM layer has a controllable
convergence rate that is independent of the dimension
Dχj . We provide our theoretical results on convergence
(Thm. 4.9), generalization (Thm. 4.10), and size generaliza-
tion (Prop. 4.11) of a graph MPNN with a WBM layer.

Following high-dimensional statistics practice (Vershynin,
2018), we restrict the tail behaviour of the measures
{µj}Cj=1 by assuming they are K-sub-Gaussians on χj , i.e.,∫

χj

e∥s∥
2/(2DχjK

2)dµj(s) ≤ 2, j = 1, . . . , C. (19)

Theorem 4.9 (convergence of an MPNN with a WBM
layer). Given an MPNN Θ, a loss function ℓ and a set
of N -nodes graphs S = {(Ak, fk), yk}nk=1 ∼ µn

G , with
µG =

∑C
j=1 h

jµGj
, {µj}Cj=1 are K-sub-Gaussians and

hj = P (y = j). Denote by S =
⊔C

j=1 Sj a same-class-
partition of S , with nj = |Sj | ≥ 1. Let ΘW

A (f) be a graphon
MPNN with a WBM layer and ΘW

A (f) be a graphon MPNN
with a WBM layer. Let η ∈ (0, 1). Under the regularity
assumptions in Appx. A (same as in Thm. 4.2), we have the
following with probability (w.p.) ≥ 1−η−e−C2N−e−C′

2n
∗

∥ΘW
A (f)−ΘW

A (f)∥2 ≤ C[αC1(N,n∗, η) + βK′,C3
(N, η)]2,

(20)

with αC1(N,n∗, η) =

√
C1

N
log(

8

η
) +

C1

n∗ log(
8

η
), (21)

βK′,C3
(N, η) = 2N− 1

2 log(
4

η
) +

√
16K′2 log(

4

η
) +

8

N
log(

4

η
)

+ C3K
′2 ×

{
O(N−1/3) if FL ∈ {1, 2, 3, 4}
N−2/FL +N−1/3 if FL > 4

,

(22)
where n∗ = min(n1, . . . , nC), C1, C2, C

′
2, C3 and K ′

are constants. The proof and details of the constants are
specified in the Appx. B.1.

We further derive the generalization upper bound of a graph
MPNN when the loss function ℓ is Lipschitz-continuous.
Theorem 4.10 (generalization of an MPNN with a WBM
layer). Under the same conditions as in Thm. 4.9, assum-
ing that there is at least one instance per class in S, the
following inequality holds w.p. ≥ 1− η − e−C2N − e−C′

2 ,

E
S∼µn

G

[(
R̂emp(Θ

W
A )−Rexp(Θ

W
A )
)2]

≤ 8∥ℓ∥2∞π2C

n
+

π
1
2L2

ℓ2
CC2

n

C∑
j=1

hj [αC1(N, 1, η) + βK′,C3
(N, η)]2,

(23)

6



Wasserstein Barycenter Matching for Graph Size Generalization of MPNNs

where αC1
(N, 1, η) is defined in Eq.(21) and βK′,C3

(N, η)
is defined Eq.(22). The constants C1, C2, C

′
2, C3 and K ′

are the same as in Thm. 4.9. More details and the proof are
specified in Appx. B.2.

Finally, we may also quantify the size generalizability of
a graph MPNN with a WBM layer across graph sets S
and T with different graph sizes NS ̸= NT , assuming the
instances in both sets are drawn from the same graphon
RGM µG . Based on Thm. 4.10, the triangle inequality, and
the union bound, we have the following proposition.
Proposition 4.11 (size generalizability of a graph MPNN
with a WBM layer). Given a set of NS-nodes graphs S ∼
µn
G and a set of NT -nodes graphs T ∼ µn′

G . Let ΘA be a
graph MPNN, under conditions of Thm. 4.10 and fixed same
size n, n′, w.p. ≥ 1− 2η − e−C2min(NS ,NT ) − e−C′

2∣∣∣∣∣ E
S∼µn

G
[R̂emp(Θ

W
A )]− E

T ∼µn′
G

[R̂emp(Θ
W
A )]

∣∣∣∣∣ ≤{∑
j O(N

−1/3
S ) +O(N

−1/3
T ) if 1 ≤ FL ≤ 6∑

j O(N
−2/FL
S ) +O(N

−2/FL
T ) if FL > 6

.

(24)

Remark 4.12. In the low-dimension regime, an MPNN with
a WBM layer has a convergence rate at −1/3, which is
provably faster than−1/2(Dχ+1) when Dχ ∈ [1, 6]. In the
high-dimensional regime, an MPNN with a WBM layer has
a convergence rate at −2/FL, which is tuneable compared
to the uncontrollable −1/2(Dχ + 1). Our non-asymptotic
results in Thm. 4.9, Thm. 4.10 and Prop. 4.11 show that the
proposed WBM provably improves the vanilla MPNN in
convergence rate, generalization, and size generalizability
for limited sample size and average graph size.

4.4. Complexity Analysis

The main source of additional time complexity in our
method arises from the computation of the Wasserstein dis-
tance between every example and every Barycenter. This
complexity is determined by the mean graph size, the num-
ber of barycenters, and the Wasserstein solver we used.
Computing Wasserstein distance involves solving a linear
programming optimization problem under linear constraints.
It can be performed by using the network simplex algo-
rithm as done by Pele & Werman (2009); Bonneel et al.
(2011) in O(n3) times, or approximately up to ϵ via the
Sinkhorn algorithm (Cuturi, 2013) in O(n2/ϵ3) time. In
our implementation, we used the EMD solver from the POT
library (Flamary et al., 2021), whose complexity is up to
O(n3). Assume that the training set consists of N graphs
with mean size Ns, and there are M barycenters with size
Ng per class (totally C classes). For simplicity, we assume
Ns = Ng. In each epoch, the time for computing the cost
matrix isO(NMC), and the time for computing the optimal
transport plan by the EMD solver is up to O(NMCN3

s ).
Therefore the overall overhead is O(NMCN3

s ).

The main space complexity overhead is the space needed
to store the cost matrix and transport plan between each
sample and each barycenter. For a graph with Ns nodes and
a barycenter with Ng nodes, it occupies O(NsNg) space.
Assume there are totally N samples and MC barycenters,
the overall space overhead is O(NMC × NsNg). The
space required to store additional parameters of WBM layer
is O(MCNgFL) where FL is the hidden layers dimension,
and is negligible when NNs >> FL.

5. Experiments
To validate the effectiveness of the WBM layer for size gen-
eralization, we conduct experiments on two sets of datasets4.
The first set of four datasets (NCI1, NCI109, PROTEINS,
and DD) from the TUDataset (Morris et al., 2020) is the
standard protocol in prior works for evaluating size general-
ization (Bevilacqua et al., 2021; Buffelli et al., 2022). We
report the corresponding results in the main text. The second
set contains two larger datasets (GOOD-Motif and GOOD-
HIV) for graph-level classification with covariate shifts in
graph sizes from the Graph OOD (Gui et al., 2022) bench-
mark. We delay the corresponding results in Appx. F. More
details on the datasets such as data splits are in Appx. C.

5.1. Experimental Settings

Following Buffelli et al. (2022), we employ the pro-
posed WBM layer on three different MPNN backbones:
GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019),
and PNA (Corso et al., 2020). We compare our method
with the following baselines: (1) Two graph kernels, the
Graphlet Counting kernel (GC kernel) (Shervashidze et al.,
2009) and Weisfeiler-Lehman kernel (WL kernel) (Sher-
vashidze et al., 2011). (2) Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019). (3) E-invariant models
(Γ1−hot,ΓGIN ,ΓRPGIN ) introduced in Bevilacqua et al.
(2021). (4) Central Moment Discrepancy regularization
(CMDr) introduced in Buffelli et al. (2022). More details of
baselines are in Appx. D. Following Buffelli et al. (2022),
we use Matthews correlation coefficient (MCC) as the eval-
uation metric for its reliability in imbalanced classifica-
tion (Chicco & Jurman, 2020). MCC ranges from -1 to
1, with 1 indicating perfect agreement of predictions with
ground truth. We report the mean MCC and standard devia-
tion of 10 independent trials. We use a 3-layer MPNN (with
different backbones) before a WBM layer. We select the
size of the Wasserstein barycenters from the {max, median}
size of the observed graphs based on the validation set. We
initialize barycenters by sampling from the training set. We
fix the number of graphons (barycenters) per class M = 3.
Our method and baselines adopt the JKNet architecture (Xu
et al., 2018). More implementation details are in Appx. E.

4Codes are available at https://github.com/JinYujie99/WBM
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Table 1. MCC (mean ± std) on the size generalization test set. The models are original MPNNs without (×) and with (✓) the WBM layer.
The right-most column shows the average improvement brought by the WBM layer.

Backbone GIN GCN PNA Avg ImprWBM layer × ✓ × ✓ × ✓

NCI109 0.18 ± 0.05 0.24 ± 0.05 0.15 ± 0.06 0.22 ± 0.04 0.23 ± 0.07 0.25 ± 0.04 ↑ 29.6%
NCI1 0.19 ± 0.06 0.24 ± 0.04 0.17 ± 0.06 0.19 ± 0.05 0.19 ± 0.08 0.21 ± 0.08 ↑ 16.2%

PROTEINS 0.25 ± 0.07 0.37 ± 0.08 0.21 ± 0.10 0.35 ± 0.09 0.22 ± 0.12 0.25 ± 0.09 ↑ 42.8%
DD 0.23 ± 0.09 0.27 ± 0.06 0.24 ± 0.07 0.28 ± 0.10 0.23 ± 0.09 0.26 ± 0.09 ↑ 15.7%

5.2. Main Results

Table 1 shows the performances of different MPNN back-
bones on the size generalization test set, with and without
the proposed WBM layer. The MPNNs with WBM layers
consistently outperform the vanilla MPNNs by a large mar-
gin, with average improvement brought by the WBM layer
up to 42.8%, which manifests the effectiveness of the WBM
layer for improving the size generalization of MPNNs. In
Table 2, we compare our MPNN with a WBM layer against
baselines. It shows that on three of the four datasets, an
original MPNN with the WBM layer achieves the best mean
performance on the test set. Specifically, our method out-
performs the IRM and E-invariant models by a large margin
and is competitive with the pure heuristic model CMDr. Fur-
thermore, we observe that always one of the MPNN with
WBM layer is among the top 4 best models on all datasets.
These results validate the effectiveness of our method.

Table 2. Performance comparisons in MCC between the MPNN
with a WBM layer and baselines. Bold emphasizes the top-4
models (in average MCC) for each dataset.

Dataset NCI109 NCI1 PROTEINS DD

PNA + IRM 0.20 ± 0.07 0.17 ± 0.07 0.21 ± 0.12 0.24 ± 0.08
GCN + IRM 0.20 ± 0.06 0.22 ± 0.06 0.23 ± 0.16 0.23 ± 0.08
GIN + IRM 0.15 ± 0.04 0.18 ± 0.06 0.24 ± 0.08 0.21 ± 0.10

WL kernel 0.21 ± 0.00 0.39 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
GC kernel 0.01 ± 0.00 0.02 ± 0.00 0.29 ± 0.00 0.00 ± 0.00

Γ1−hot 0.22 ± 0.06 0.15 ± 0.05 0.18 ± 0.08 0.22 ± 0.09
ΓGIN 0.16 ± 0.07 0.24 ± 0.05 0.28 ± 0.10 0.27 ± 0.05

ΓRPGIN 0.19 ± 0.06 0.26 ± 0.05 0.26 ± 0.07 0.20 ± 0.05

PNA + CMDr 0.24 ± 0.07 0.22 ± 0.07 0.33 ± 0.09 0.27 ± 0.08
GCN + CMDr 0.19 ± 0.06 0.25 ± 0.06 0.29 ± 0.13 0.26 ± 0.07
GIN + CMDr 0.20 ± 0.05 0.23 ± 0.08 0.36 ± 0.11 0.25 ± 0.09

PNA + WBM 0.25 ± 0.04 0.21 ± 0.08 0.25 ± 0.09 0.26 ± 0.09
GCN + WBM 0.22 ± 0.04 0.19 ± 0.05 0.35 ± 0.09 0.28 ± 0.10
GIN + WBM 0.24 ± 0.05 0.24 ± 0.04 0.37 ± 0.08 0.27 ± 0.06

Table 3. Ablation studies. Table shows mean MCC over the test
data on four datasets with GIN as the backbone.

Dataset NCI109 NCI1 PROTEINS DD Avg

EBM 0.18 ± 0.08 0.22 ± 0.06 0.35 ± 0.09 0.21 ± 0.06 0.24
WBM0 0.19 ± 0.07 0.21 ± 0.06 0.33 ± 0.11 0.24 ± 0.11 0.24

WBM1/N 0.20 ± 0.05 0.16 ± 0.03 0.36 ± 0.10 0.21 ± 0.07 0.23

WBM 0.24 ± 0.05 0.24 ± 0.04 0.37 ± 0.08 0.27 ± 0.06 0.28

We conduct PCA visualizations of the WBM embeddings for
the PROTEINS dataset. The figures are shown in Figure 2.
We observe examples from different categories form well-
separated cluster structures as desired. We can also see that
the learned Wasserstein barycenters are extreme points in
the embedding space of the PCA, which is similar to the
phenomenon of TFGW embeddings in Vincent-Cuaz et al.
(2022), as the result of using distances as representations.

5.3. The Sensitivity on FL

In this subsection, we study the empirical impact of FL

on size generalization performance over the test data. We
use a GIN model with the WBM layer and vary FL in
{8, 16, 32, 64}. Figure 3 shows the mean test MCC on the
four datasets, respectively. We can observe that the results
approximately present bell-shaped curves, which implies a
trade-off between discrimination and convergence with re-
gard to hidden layers dimension FL. On the one hand, a low
dimensionality constrains the expressiveness of MPNN, thus
impairing the expressiveness of the model and degrading
the discrimination. On the other hand, a high dimensionality
leads to slow convergence of size generalization, as shown
in Thm. 4.9, Thm. 4.10, and Prop. 4.11.

5.4. Ablation Studies

In this subsection, we use a GIN model to do ablation stud-
ies to verify the effectiveness of all components of WBM,
including using Wasserstein metric space against Euclidean
space, imposing the WBM loss ℓWBM explicitly, and learn-
ing Wasserstein barycenters nodes weights. The results are
shown in Table 3 and are also obtained from 10 independent
trials with different random seeds.

Effect of Wasserstein metric space. To validate the effec-
tiveness of using Wasserstein barycenters, rather than Eu-
clidean barycenters, we compare our model with Euclidean
barycenter matching (EBM). Specifically, EBM first pools
the node embeddings to obtain the graph embeddings for
each input graph, and then the EBM layer represents each
graph by Euclidean distances between its graph embedding
and the class-wise Euclidean barycenters. The class-wise
Euclidean barycenters are learned end-to-end by optimiz-
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(a) (b) (c)

Figure 2. Visualization of the WBM embeddings using PCA. Three different runs with three random seeds of the PROTEINS.

Figure 3. Mean MCC of a GIN model with the WBM layer over the
test data, with hidden layers dimension varying in {8, 16, 32, 64}.

ing the classification loss and a matching loss similar to
ℓWBM . It is shown in Table 3 that WBM outperforms
EBM, which validates the superiority of the Wasserstein
barycenter. Since it is able to take into account the underly-
ing geometry of the measures while a Euclidean barycenter
cannot (Backhoff-Veraguas et al., 2022).

Effect of explicitly imposing ℓWBM . To show the effec-
tiveness of imposing ℓWBM explicitly, we compare with the
models which only optimize the classification loss (dubbed
WBM0 in Table 3). Imposing ℓWBM explicitly endows
the learned Wasserstein barycenters with semantic meanings
related to a particular class. The results show that the perfor-
mances degrade without ℓWBM , and empirically justify the
necessity of considering class-wise Wasserstein barycenters
for graph size generalization.

Learning Wasserstein barycenters nodes weights. In a
WBM layer, both the node embeddings and the node weights
of the Wasserstein barycenters are learned end-to-end. To
analyze the effect of learning node weights, we compare
with the models without learning node weights (dubbed

WBM1/N in Table 3). These models fix the node weights
to uniform 1/N , where N is the number of nodes of the
barycenter. From the results, we can find that the perfor-
mances degrade when fixing node weights. We perceive
that learning node weights weakens the effect of incorrect
size settings of barycenters, thus leading to better perfor-
mance. Additional ablations studies can be found in the
Appendix G, validating the effectiveness of the components
of the proposed WBM method.

6. Conclusion and Discussion
In this paper, we propose a WBM layer, aiming at bridging
theoretical understanding and empirical success of size gen-
eralization for MPNNs. We give non-asymptotic bounds
in convergence, generalization, and size generalizability
for an MPNN with a WBM layer. We validate the effec-
tiveness of the WBM layer for size generalization on real-
world datasets. There are many future directions on the
WBM layer: e.g., exploiting its stability against various
types of perturbations, discussing its induced discriminabil-
ity based on the theory in Balcan et al. (2008), etc. The
additional overhead of time complexity is a limitation, po-
tential speedup can be obtained by adapting advanced opti-
mal transport algorithms, such as the primal-dual method
in Dvurechensky et al. (2018).
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metric spaces and in the space of probability measures.
Springer Science & Business Media, 2005.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Backhoff-Veraguas, J., Fontbona, J., Rios, G., and Tobar, F.
Bayesian learning with wasserstein barycenters. ESAIM:
Probability and Statistics, 26:436–472, 2022.

Balcan, M.-F., Blum, A., and Srebro, N. A theory of learning
with similarity functions. Machine Learning, 72(1-2):89–
112, 2008.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bevilacqua, B., Zhou, Y., and Ribeiro, B. Size-invariant
graph representations for graph classification extrapola-
tions. In International Conference on Machine Learning,
pp. 837–851. PMLR, 2021.

Bonneel, N., Van De Panne, M., Paris, S., and Heidrich,
W. Displacement interpolation using lagrangian mass
transport. In Proceedings of the 2011 SIGGRAPH Asia
conference, pp. 1–12, 2011.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
International Conference on Learning Representations,
2013.

Buffelli, D., Lio, P., and Vandin, F. Sizeshiftreg: a regu-
larization method for improving size-generalization in
graph neural networks. In Advances in Neural Informa-
tion Processing Systems, 2022.

Chen, B., Bécigneul, G., Ganea, O.-E., Barzilay, R., and
Jaakkola, T. Optimal transport graph neural networks.
arXiv preprint arXiv:2006.04804, 2020.

Chicco, D. and Jurman, G. The advantages of the matthews
correlation coefficient (mcc) over f1 score and accuracy
in binary classification evaluation. BMC genomics, 21(1):
1–13, 2020.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
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Organization of the appendix.
In Section A, we introduce the widely adopted regularity assumptions for theoretical analysis of MPNNs.
In Section B, we detail the convergence and generalization results along with the proofs.
In Section C, we introduce more details on the datasets used for numerical experiments.
In Section D, we give more information about the baselines being compared.
In Section E, we give more explanation on the implementation details of the empirical realization.
In Section F, we provide empirical proofs of the effectiveness of the MPNN with a WBM layer in size generalization in
larger datasets.
In Section G, we provide additional experiments validating the effectiveness of the components of the WBM method. The
Section F and Section G act as a complementary for Section 5.
In Section H, we give an algorithmic framework description for our method.
Lastly, in Section I, we rehearse some useful results from third-party theoretical studies.

A. Regularity Assumptions
Assumption A.1 (Regularity assumptions, Assumption A.10 in Maskey et al. (2022)). Let (χ, d) be a metric space
and A : χ × χ → [0,+∞) be a graphon. Let Θ = ({Φ(l),Ψ(l)}Ll=1) be an L-layer MPNN with message functions
Φ(l) : R2Fl−1 → RHl−1 and update functions Ψ(l) : RFl−1+Hl−1 → RFl , for l = 1, . . . , L. The regularity assumptions are
as follows,

1. The space χ is compact, and there exist Dχ, Cχ > 0 such that C(χ, ε, d) ≤ Cχε
−Dχ for every ϵ > 0, where C(χ, ε, d)

is the ϵ-covering numbers of the space χ.

2. The diameter of space χ is bounded by 1, i.e., diam(χ) := supx,y∈χ d(x, y) ≤ 1.

3. The graphon satisfies ∥A∥∞ <∞.

4. The graphon function A(·, ·) is LA-Lipschitz continuous with respect to both of its variables if fixing the other variable,
i.e., ∀t ∈ χ, A(·, t) is LA-Lipschitz continuous. And ∀s ∈ χ, A(s, ·) is LA-Lipschitz continuous.

5. There exists a constant dmin > 0 such that the graphon degree dA(·) is bounded from below by dmin > 0, i.e., ∀s ∈ χ,
dA(s) ≥ dmin.

6. For every l = 1, . . . , L, the message function Φ(l) is LΦ(l)-Lipschitz continuous with Φ(l)(0, 0) = 0. And the update
function Ψ(l) is LΨ(l) -Lipschitz continuous with Ψ(l)(0, 0) = 0.

7. There exists a constant Adiag > 0 such that for every s ∈ χ, we have A(s, s) ≥ Adiag > 0.

Remark A.2 (non-necessity of the zero condition). The key for Assumption A.1.6 is the Lipschitz continuity. We introduce
the zero condition for ease of notation. The zero condition is not necessary to arrive at the proposed upper bounds (up to a
rescaling of the constant terms). In fact, Lemma I.1 used in the proofs is a simplified version adopting the zero condition
of Lemma B.9 in Maskey et al. (2022). In their Lemma B.9, there are more involved terms related to ∥Φ(l)(0, 0)∥ and
∥Ψ(l)(0, 0)∥ that only affect the constant terms in our bounds. Additionally, the conclusion of our Lemma B.1 still holds
without the zero condition, by rescaling the K∗ again with the non-null bias term.

B. Convergence and Generalization of an MPNN with a WBM layer
In this section, we give the details and the proofs for Theorem 4.9 and Theorem 4.10.

B.1. Convergence of an MPNN with a WBM layer

Give an L-layer MPNN Θ, we will use f (L) and (ΘA(f) ◦ f) to denote the same mapping from χ to RFL interchangeably.
We also use f (L) to denote the mapped image or the variable whenever it is clear from the context.

We first give a Lemma restricting the tail behaviour of the push-forward measure νj = (ΘA(f) ◦ f)#µj for every
j = 1, . . . , C.
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Lemma B.1 (the push-forward measure ν of a sub-Gaussian µ). Let (χ, d, µ) be a metric measure space and A : χ× χ→
[0,+∞) be a graphon. Let Θ = ({Φ(l),Ψ(l)}Ll=1) be an L-layer MPNN s.t. the regularity assumptions in Appendix A are
satisfied. Consider an Lf -Lipschitz continuous metric-space signal f : χ→ RF with finite infinity norm ∥f∥ <∞. If µ is
K-sub-Gaussians on χ, i.e., ∫

χ

e∥s∥
2/(2DχK

2)dµ(s) ≤ 2, (B.1)

then ν is K∗-sub-Gaussian, with K∗ = Lf(L)K
√

Dχ

FL
.

Moreover, for q ∈ N, there is

Mq(ν)
def.
=

∫
RFL

∥t∥qdν(t) ≤ 2K∗qΓ(
q

2
+ 1), (B.2)

where Γ(x) is the Gamma function for x > 0.

Proof. We check ν is K∗-sub-Gaussian by definition Eq.(B.1),∫
RFL

e∥t∥
2/(2FLK∗2)dν(t) =

∫
χ

e∥ΘA(f)◦f)(s)∥2/(2FLK∗2)dµ(s)

(a)

≤
∫
χ

e
L

f(L)∥s∥2/(2FLK∗2)
dµ(s)

(b)
=

∫
χ

e∥s∥
2/(2DχK

2)dµ(s)
(c)

≤ 2,

where (a) invokes the Lipschitz continuity of f (L) and regularity assumption A.1.6, with Lemma B.9 in (Maskey et al.,
2022) (cf. Lemma I.1) assuring the Lipschitz-continuity of f (L) and the existence of Lipschitz constant Lf(L) . The equality

(b) uses K∗ = Lf(L)K
√

Dχ

FL
, and (c) invokes the assumption that µ is K-sub-Gaussian on χ.

Then by Markov’s inequality,

Prob
(
∥f (L)(t)∥ > s

)
= Prob

(
e

∥f(L)(t)∥2

K∗2 ≤ e
s2

K∗2

)
≤E[e∥f(L)∥2/K∗2

]

e
s2

K∗2
≤ 2e−

s2

K∗2 .

(B.3)

By the layer cake representation

Mq(ν) =

∫
RFL

∥f (L)∥qdν =

∫ ∞

0

Prob(∥f (L)∥q ≥ s)ds

(d)

≤2

∫ ∞

0

qsq−1e−
s2

K∗2 ds

(e)

≤2K∗q q

2

∫ ∞

0

tq/2−1e−tdt = 2K∗qΓ(
q

2
+ 1),

where (d) invokes Eq.(B.3) and (e) changes the variable with t = s2/K∗2.

We rewrite Theorem 4.9. Then we prove it with details on the constants.

Theorem B.2 (convergence of an MPNN with a WBM layer). Given an MPNN Θ, a loss function ℓ and a set of N -nodes
graphs S = {(Ak, fk), yk}nk=1 ∼ µn

G , with µG =
∑C

j=1 h
jµGj , {µj}Cj=1 are K-sub-Gaussians and hj = P (y = j). Denote

by S =
⊔C

j=1 Sj a same-class-partition of S , with nj = |Sj | ≥ 1. Let ΘW
A (f) and ΘW

A (f) be the MPNNs with WBM layers,
i.e., 

ΘW
A (f) =

(
W2(b̂2(S1), ν̂), . . . ,W2(b̂2(SC), ν̂)

)
, (B.4)

ΘW
A (f) =

(
W2(b

1
2, ν), . . . ,W2(b

j
2, ν)

)
, (B.5)
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where ν̂ = (ΘA(f) ◦ f)#µ̂ with µ̂ = 1/N
∑N

i=1 δXj
i

for a given random graph. Let η ∈ (0, 1). Under the regularity

assumptions in Appendix A, with probability no less than 1− η − e−C2N − e−C′
2n

∗
we have the following

∥ΘW
A (f)−ΘW

A (f)∥2 ≤ C[αC1
(N,n∗, η) + βK′,C3

(N, η)]2, (B.6)

where

αC1(N,n∗, η) =

√
C1

N
log(

8

η
) +

C1

n∗ log(
8

η
), (B.7)

βK′,C3(N, η) = 2N− 1
2 log(

4

η
) +

√
16K ′2 log(

4

η
) +

8

N
log(

4

η
) + C3K

′2 ×

{
O(N−1/3) if FL ∈ {1, 2, 3, 4}
N−2/FL +N−1/3 if FL > 4

,

(B.8)

where n∗ = min(n1, . . . , nC). C1, C2, C
′
2, C3 and K ′ are constants to be specified in the proof (cf. Eq.(B.20)).

Proof. For simplicity of notation, denote b̂
j

2 := b̂2(Sj). For every j = 1, . . . , C we can conclude the following inequality
from the fact 2-Wasserstein distance is a metric in the Wasserstein space,

W2(ν̂, b̂
j

2) ≤ W2(ν̂, ν) +W2(ν, b̂
j

2) ≤ W2(ν, ν̂) +W2(b
j
2, b̂

j

2) +W2(ν, b
j
2).

Rearranging both sides, for every j = 1, . . . , C we have

|W2(ν̂, b̂
j

2)−W2(ν, b
j
2)| ≤ W2(ν, ν̂) +W2(b

j
2, b̂

j

2). (B.9)

Next, we investigate ∥ΘW
A (f)−ΘW

A (f)∥2,

∥ΘW
A (f)−ΘW

A (f)∥2 =

C∑
j=1

(
W2(ν̂, b̂

j

2)−W2(ν, b
j
2)
)2 Eq.(B.9)

≤
C∑

j=1

(
W2(ν, ν̂) +W2(b

j
2, b̂

j

2)
)2

(B.10)

We investigate the bound onW2(ν, ν̂) and the bound onW2(b
j
2, b̂

j

2) separately.

The bound on W2(ν, ν̂). We first bound the expectation E (Wp (ν̂, ν)) with the acknowledged Theorem 1 in Fournier
& Guillin (2015) (cf. Lemma I.2). Then we bound the difference between W2(ν, ν̂) and E (Wp (ν̂, ν)) with a mean-
concentration inequality for W2(ν, ν̂), which is the Corollary 5.5 from Lei (2020) (cf. Lemma I.3.) The Theorem 1
in Fournier & Guillin (2015) (cf. Lemma I.2) says that if Mq(ν) < ∞ fome some q > p, then there exists a constant D
depending only on p, d, q such that for all N ≥ 1,

E (Wp (ν̂, ν)) ≤ DMp/q
q (ν)×


N−1/2 +N−(q−p)/q if p > d/2 and q ̸= 2p,

N−1/2 log(1 +N) +N−(q−p)/q if p = d/2 and q ̸= 2p,

N−p/d +N−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p).

Then, guaranteed by Eq. (B.2) in Lemma B.1, taking d = FL p = 2 and q = 3 we get

E (W2 (ν̂, ν)) ≤ DM
2/3
3 (ν)×

{
O(N−1/3) if FL ∈ {1, 2, 3, 4}
N−2/FL +N−1/3 if FL > 4

= D22/3K∗2Γ(
5

2
)×

{
O(N−1/3) if FL ∈ {1, 2, 3, 4}
N−2/FL +N−1/3 if FL > 4

.

(B.11)

According to the Corollary 5.5 from Lei (2020) (cf. Lemma I.3.), if Mq(ν) ≤ 1
2s

2q!V q−2 for all integer q ≥ 2 and some
constants s, V , then for all t > 0

Prob [|W2(ν̂, ν)− E(W2(ν̂, ν))| ≥ t] ≤ 2 exp

(
− t2

8s2 + 4V tN−1/2

)
.
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Based on Mq(ν) ≤ 2K∗qΓ( q2 + 1) from Lemma B.1. It is easy to check that s =
√
2K∗ and V = K∗ satisfying the

condition Mq(ν) ≤ 1
2s

2q!V q−2 for all integer q ≥ 2. Therefore we have the following

Prob [|W2(ν̂, ν)− E(W2(ν̂, ν))| ≥ t] ≤ 2 exp

(
− t2

16K∗2 + 4K∗tN−1/2

)
. (B.12)

For η ∈ (0, 1), let η
2 = 2 exp

(
− t2

16K∗2+4K∗tN−1/2

)
, we solve this the quadratic equation and get

t = 2N− 1
2 log(

4

η
)±

√
16K∗2 log(

4

η
) +

8

N
log(

4

η
) (B.13)

Therefore, we have

w.p. ≥ 1− η/2, |W2(ν̂, ν)− E(W2(ν̂, ν))| ≤ 2N− 1
2 log(

4

η
) +

√
16K∗2 log(

4

η
) +

8

N
log(

4

η
). (B.14)

Combining Eq.(B.11) and Eq.(B.14), we get a bound forW2(ν, ν̂),

w.p. ≥ 1− η/2,

W2(ν̂, ν) ≤ 2N− 1
2 log(

4

η
) +

√
16K∗2 log(

4

η
) +

8

N
log(

4

η
) +D22/3K∗2Γ(

5

2
)×

{
O(N−1/3) if FL ∈ {1, 2, 3, 4}
N−2/FL +N−1/3 if FL > 4

.

(B.15)

The bound onW2(b
j
2, b̂

j

2). We apply the concentration results for Wasserstein barycenters, i.e., Theorem 12 in (Le Gouic

et al., 2022) (cf. Lemma I.4) to derive the uniform bound onW2(b
j
2, b̂

j

2) for j = 1, . . . , C.
Fixing j, consider the class j empirical barycenter of empirical measure P̂j

nj
= 1/nj

∑nj

k=1 δν̂j
k
.

Notice that ν̂jk = 1/N
∑N

i=1 δf(L)j
k,i

. We can rewrite the empirical measure P̂j
nj

as

P̂j
nj

= 1/nj

nj∑
k=1

1/N

N∑
i=1

δf(L)j
k,i

. (B.16)

Considering the relationship between b̂
j

2 and bj2 = νj , and considering the limiting process w.r.t. the index i and the index k

sequentially, we may apply the concentration inequality in Lemma I.4 twice to bound theW2(b
j
2, b̂

j

2). For η ∈ (0, 1), based
on the union bound and Lemma I.4, there is

w.p. ≥ 1− η/2− e−C2N − e−C′
2n

j

, W2
2 (b

j
2, b̂

j

2) ≤
E

N
log(

8

η
) +

E′

nj
log(

8

η
), (B.17)

where C2, C2, E, and E′ are constants from the Wasserstein barycenter concentration inequality and are independent of N
and nj .
Taking n∗ = min(n1, . . . , nC) and C1 = max(E,E′), for every class j = 1, . . . , C we have a uniform bound

w.p. ≥ 1− η/2− e−C2N − e−C′
2n

∗
, W2

2 (b
j
2, b̂

j

2) ≤
C1

N
log(

8

η
) +

C1

n∗ log(
8

η
), (B.18)

Finally, combining the Eq.(B.10), and uniform bounds in Eq.(B.15) and Eq.(B.18), with union bound, we have with
probability no less than 1− η − e−C2N − e−C′

2

∥ΘW
A (f)−ΘW

A (f)∥2 ≤ C × [

√
C1

N
log(

8

η
) +

C1

n∗ log(
8

η
)+

2N− 1
2 log(

4

η
) +

√
16K∗2 log(

4

η
) +

8

N
log(

4

η
) +D22/3K∗2Γ(

5

2
)×

{
O(N−1/3) if FL ∈ {1, 2, 3, 4}
N−2/FL +N−1/3 if FL > 4

]2.

(B.19)
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Let K ′ = K
√

Dχ

FL
× (Z

(L)
1 ∥f∥∞ + Z

(L)
2 Lf ), where Z

(L)
1 , Z

(L)
2 are specified in Eq. I.2 in Lemma. I.1.Recalling K∗ =

Lf(L)K
√

Dχ

FL
in Lemma. B.1 and Lf(l) ≤ Z

(l)
1 ∥f∥∞ + Z

(l)
2 Lf in Lemma. I.1. We have K ′ ≥ K∗.

The theorem is concluded by taking

C1 = max(E,E′)

C3 = 22/3DΓ( 52 )

K ′ = K
√

Dχ

FL
(Z

(L)
1 ∥f∥∞ + Z

(L)
2 Lf )

αC1
(N,n∗, η) =

√
C1

N log( 8η ) +
C1

n∗ log( 8η )

βK′,C3
(N, η) = 2N− 1

2 log( 4η ) +
√
16K ′2 log( 4η ) +

8
N log( 4η ) + C3K

′2 ×

{
O(N−1/3) if FL ∈ {1, 2, 3, 4}
N−2/FL +N−1/3 if FL > 4

.

(B.20)

Remark B.3. For ease of exposition, we make a fixed graph size assumption. However, the proven upper bounds would
be maintained even when the distribution of the number of nodes is considered. Denote by N the random variable for
the number of nodes. Suppose that N follows the distribution Q, i.e., N ∼ Q. Whereof we need an extended version of
the graph data generation process considering Q, in contrast to the process described in Section 4.1 of the main context.
Specifically, the novel measure on class j graphs is

µGj
=

∞∑
N=1

Q(N)(µj)N .

The upper bounds in the main paper can be thought of as the result of conditioning on N = Ns. Combining the extended
measure and Theorem 4.9, it is straightforward to arrive at the following result,

∥ΘW
A (f)−ΘW

A (f)∥2 ≤ CEN∼Q [αC1(N,n∗, η) + βK′,C3(N, η)]
2
.

Similar corollaries are also straightforward for Theorem 4.10 and Proposition 4.11.

B.2. Generalization of an MPNN with a WBM layer

We rewrite Theorem 4.10 and prove it. We follow the proof technique of Theorem 3.3 in Maskey et al. (2022) that uses
a concentration inequality for multinomial measures proposed in Van Der Vaart et al. (1996) (cf. Lemma I.5) and ”ghost
samples”.
Theorem B.4 (generalization of an MPNN with a WBM layer). Given an MPNN Θ, a loss function ℓ. Consider a set
of N -nodes random graphs S = {(Ak, fk), yk}nk=1 ∼ µn

G , with µG =
∑C

j=1 h
jµGj

, {µj}Cj=1 are K-sub-Gaussians and

hj = P (y = j). Denote by S =
⊔C

j=1 Sj a same-class-partition of S, with nj = |Sj | ≥ 1. Let ΘW
A (f) and ΘW

A (f) be
the MPNNs with WBM layers. We also assume that there is at least one instance per class5 in S. We have the following
inequality w.p. ≥ 1− η − e−C2N − e−C′

2 ,

E
S∼µn

G

[(
R̂emp(Θ

W
A )−Rexp(Θ

W
A )
)2]
≤ 8∥ℓ∥2∞π2C

n
+

π
1
2L2

ℓ2
CC2

n

C∑
j=1

hj [αC1
(N, 1, η) + βK′,C3

(N, η)]2, (B.21)

where αC1
(N, 1, η) and βK′,C3

(N, η) are defined in Eq.(B.20), and C1, C2, C
′
2, C3 and K ′ are the same constants as in

Theorem B.2.

Proof. Denote by n = (n1, . . . , nC) the random vector that is multinomially distributed with parameters n and h1, . . . , hC .
For ease of notation, we write Sj = {(Aj

k, fjk), yj}
nj

k=1 to denote the set of random graphs of the j-th class, for j = 1, . . . , C.
Denote by E to be the event that at least one instance per class is observed. Denote by Dd the event defined by

Dz
def.
= {n = (n1, . . . , nj)|

C∑
j=1

nj = n, 2
√
nz ≤ |nj − nhj | ≤ 2

√
n(z + 1)}. (B.22)

5We focus on closed set classification in this paper.
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We decompose the generalization risk as follows.
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( 1
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Regarding EµGj

[
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(
f j
)
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as a scalar and invoking the law of total probability, we have
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,

(B.24)
where we use the notation of E

Sn∼µn
G

[·] indicating the conditional choice of the dataset on the choice of n = {n1, . . . , nC}

(with
∑C

j=1 nj = n) by Sn := {{(Aj
k,f

j
k),y

j
k}

nj

k=1}Cj=1.

For j = 1, . . . , C, if nj < nhj , add additional i.i.d. random graphs {(Aj
k, fjk)}nh

j

k=nj
sampled from (Aj , f j).

We use the notation
∑n

k=m ak := −
∑n

k=m ak for real sequence {ak}mk=n for n < m. Then we manipulate

18



Wasserstein Barycenter Matching for Graph Size Generalization of MPNNs

E
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with ”ghost samples” as
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We first investigate the second term in Eq. (B.25). Conditioned on event Dz , we have
∑C

j=1 |nj − nhj | < 2
√
n(z + 1),

therefore
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Then
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where the inequality (a) invokes Lemma I.5.
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We next investigate the second term in Eq. (B.25). Using the fact that
∑C

j=1 a
2
j ≤ C
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j , we have the following
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(B.28)

where (b) invokes Theorem B.2.
Because we assume that at least one graph per class should be observed, thus the probability of any events being discussed
is conditioned on event E . Thereof αC1(N, 1, η) is an uniform bound on αC1(N,n∗, η) for every z and any n ∈ Dz ∩ E
with n∗ := min(n1, . . . , nC). Meanwhile, βK′,C3(N, η) is independent of n. Therefore, by Lemma I.5
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(B.29)
Finally, combining Eq.(B.27), Eq.(B.29), and Eq.(B.23) conclude the proof of the theorem.
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C. Dataset Information
C.1. Small-scale datasets

NCI109, NCI1, PROTEINS, and DD are four vertex-attributed graph datasets collected from real-world (Morris et al.,
2020), and are commonly used in graph size generalization literature (Yehudai et al., 2021; Bevilacqua et al., 2021; Buffelli
et al., 2022). The prediction tasks for these datasets are binary classification. Following previous work, we explicitly split
the dataset to create a domain shift on size: graphs with sizes smaller than 50-percentile are assigned to the training set,
while graphs with sizes larger than 90-percentile are assigned to the test set. 10% of the training examples are split out as a
validation set for model selection and hyperparameter tuning. With this split, the average size of the test graphs is 3 to 9
times larger than the average size of the training graphs (in more detail, it is 3 for NCI109 and NCI1, 9 for PROTEINS, and
5 for DD). This split leads to an imbalanced training set, as shown in Table 4.

Table 4. Dataset statistics, taken from (Buffelli et al., 2022).

Dataset NCI1 NCI109

ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%
CLASS A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%

NUM OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61

Dataset PROTEINS DD

ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%
CLASS A 59.56% 41.97% 90.17% 58.65% 35.57% 79.66%
CLASS B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%

NUM OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746

To combat the class imbalance, we follow (Bevilacqua et al., 2021; Buffelli et al., 2022) to weight different classes in the
classification loss according to the frequency of a class in the training set.

C.2. GOOD datasets

GOOD (Gui et al., 2022) is a recently established benchmark for testing graph out-of-distribution algorithms. Its designed
data splitting creates various covariate shifts and concept shifts between the training set and test set, including base, color,
size, scaffold, degree, and so on. In our experiment, we consider GOOD-Motif and GOOD-HIV using the default data
splitting which creates covariate shifts in graph sizes (i.e., size splitting). We choose them because the prediction tasks of the
two datasets are multi-class graph classification. Note that each instance in GOOD datasets has an accessible domain label
(indicates the level of its size), but we do not use them in our method and treat the problem as a single-source generalization.
We give a brief introduction to the two datasets as below:

• GOOD-Motif is synthetic base-motif dataset motivated by Spurious-Motif (Wu et al., 2022b). Each graph in the
dataset is generated by connecting a base graph and a motif, and the label is determined by the motif. The task is to
predict the label (3-way classification). For size covariate shift, the training set contains small size graphs, while the
validation and the test sets include the middle and the largest size ranges, respectively.

• GOOD-HIV is a real-world molecular dataset adapted from MoleculeNet (Wu et al., 2018). The inputs are molecular
graphs in which nodes are atoms, and edges are chemical bonds. The task is to predict whether the molecule can inhibit
HIV replication (binary classification). For size covariate shift ,the larger-size graphs are used for training and the
smaller ones are used for validation and testing.

The statistics of the two datasets (with size covariate shift splitting) are shown in Table 5.
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Table 5. Statistics of GOOD datasets (with size covariate shift splitting).

Dataset GOOD-Motif GOOD-HIV

Train NUM OF GRAPHS 18000 26169
AVG GRAPH SIZE 16.9 27.9

Val NUM OF GRAPHS 3000 2773
AVG GRAPH SIZE 39.2 15.5

Test NUM OF GRAPHS 3000 3961
AVG GRAPH SIZE 87.2 12.1

D. Baseline Details
This section provides a detailed description of the baseline methods used for benchmark comparisons.

• Invariant Risk Minimization (IRM, (Arjovsky et al., 2019)) searches for graph representations that perform well across
all environments by penalizing feature distributions that have different optimal linear classifiers for each environment.

• Variance Risk Extrapolation (VREx, (Krueger et al., 2021)) is a form of robust optimization over a perturbation set of
extrapolated domains and minimizes the variance of training risks across domains.

• Group Distributionally Robust Optimization (GroupDRO, (Sagawa et al., 2019)) is a fair optimization method that
tackles the problem that the distribution minority lacks sufficient training. It explicitly minimizes the loss in the worst
training environment.

• Deep Correlation Alignment (Deep Coral, (Sun & Saenko, 2016)) encourages similar features in different domains
and minimizes the deviation of covariant matrices from different training domains.

• Mixup (Zhang et al., 2017) is a data augmentation method to improve generalization, which interpolates both features
and labels of a pair of instances to produce synthetic samples. The GOOD implementation uses the Mixup technique
designed for graph classification (Wang et al., 2021), which interpolates complex and diverse graphs in the semantic
space rather than in input space.

• E-invariant models (Γ1−hot,ΓGIN,ΓRPGIN, (Bevilacqua et al., 2021)) assume a causal model describing the
generating process for graphs of different sizes, and are invariant to the train/test size shifts of the causal model.

• Central Moment Discrepancy regularization (CMDr, (Buffelli et al., 2022)) is a heuristic method that simulates size
shift by graph coarsening and penalizes the shift in the distribution of node embeddings of different coarsened versions.

• Graphlet Counting kernel (GC kernel, (Shervashidze et al., 2009)) is a kernel method that compares graphs by
counting graphlets, i.e., subgraphs with k nodes where k is some specified value.

• Weisfeiler-Lehman kernel (WL kernel, (Shervashidze et al., 2011)) is a family of graph kernels that extract features
based on Weisfeiler-Lehman test of isomorphism on graphs.
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E. More Implementation Details
E.1. Evaluation protocol

For the four real-world datasets (NCI109, NCI1, PROTEINS and DD), as the data splitting process leads to class imbalance,
we follow (Buffelli et al., 2022) to use Matthews correlation coefficient (MCC) as the evaluation metric, which has been
shown to be more reliable than other metrics in imbalanced classification settings (Chicco & Jurman, 2020). MCC gives a
value between -1 and 1, where -1 indicates perfect disagreement and 1 indicates perfect agreement between the predictions
and the ground-truth labels. For the GOOD benchmark, we use accuracy for GOOD-Motif and ROC-AUC for GOOD-HIV
as the evaluation metrics.

For all methods, the model with the highest metric on the validation set is evaluated on the test set, and we report the mean
test metric and standard deviation of ten independent trials with different random seeds. For all the baselines we use the
hyperparameters or the original results introduced in their respective papers.

E.2. Hyperparameters

For the four real-world datasets (NCI109, NCI1, PROTEINS and DD), we use a 3-layer MPNN (GIN, GCN and PNA) to
filter the original graph signals to conduct barycenter matching in the Wasserstein metric space. For the WBM layer, we
set the size of the Wasserstein barycenters to the max/median size of the observed graphs. The Wasserstein barycenters
are initialized by randomly sampling from the observed graphs. The number of barycenters per class M is chosen from
{1, 2, 3, 4} on NCI109. We find that M = 3 is good to balance performance and efficiency and fix it for the other datasets.
The trade-off hyperparameter λ is tuned in {0.005, 0.01, 0.05, 0.1, 0.2}. The WBM embedding is normalized using L2

normalization. We find empirically that normalizing the WBM embeddings could make the training more stable. The
network is trained for 500 epochs, using the Adam optimizer with a weight decay of 1e-5. For fairness, we validate the batch
size, learning rate, and MPNN hidden layers dimension, similar to (Bevilacqua et al., 2021; Buffelli et al., 2022). The batch
size is selected from {64, 128} and the learning rate is selected from {1e-3, 5e-3, 1e-2}. The hidden layer’s dimension is
chosen from {8, 16, 32, 64}.

For GOOD datasets, we use GIN for GOOD-Motif and GIN-Virtual Node (Gilmer et al., 2017; Xu et al., 2019)(vGIN)
for GOOD-HIV as the backbones. we use the default backbone architecture, batch size, learning rate, and training epochs
in GOOD official implementation. We only reduce the MPNN hidden layers dimension from 300 to 32, since too large
dimensionality increases the computational overhead in computing Wasserstein distance. The number of total Wasserstein
barycenters is fixed as 6 (so M = 2 for GOOD-Motif and M = 3 for GOOD-HIV). The trade-off hyperparameter λ is tuned
in {0.005, 0.01, 0.05, 0.1, 0.2}.

E.3. Experimental environments

Hardware environments. We perform our experiments on three machines: one with 8 Nvidia RTX3090s and Xeon
E5-2680, one with 8 Nvidia RTX3090s and Xeon Platinum 8358P, and one with 2 Nvidia RTX8000s and Xeon Gold 6230.

Software environments. Our experiments are conducted using Python 3.8, Pytorch 1.11.0, Pytorch-Geometric (PyG)
2.1.0 and Python Optimal Transport (POT) 0.8.2. Our GIN, GCN, and PNA implementations are based on their PyG
implementations. For GOOD-HIV, we use the official implementation of GIN-Virtual Node (vGIN) in GOOD benchmark.
We use POT package to compute the Wasserstein distance.
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F. Quantitive Results on Good-Motif and Good-HIV
F.1. Baselines

For GOOD benchmark, We consider the heuristic CMDr (Buffelli et al., 2022) along with five mainstream out-of-distribution
algorithms including IRM, VREx (Krueger et al., 2021), GroupDRO (Sagawa et al., 2019), Deep Coral (Sun & Saenko,
2016) and Mixup (Wang et al., 2021), as the baselines. More details of each baseline can be found in Appx. D. More
implementation details are included in Appx. E.

F.2. Main results

Table 6 shows the performances of GIN (vGIN) backbones on the size generalization test set, with and without the
proposed WBM layer. The GIN (vGIN) with a WBM layer outperforms the vanilla version by a large margin, with average
improvement brought by the WBM layer up to 14.7%, which manifests the effectiveness of the WBM layer for improving
the size generalization of MPNNs.

Table 6. Accuracy on GOOD-Motif and ROC-AUC on GOOD-HIV (mean ± std). The models are original GIN without (×) and with (✓)
the WBM layer. The right-most column shows the improvement brought by the WBM layer.

Backbone GIN(vGIN) ImprovementWBM layer × ✓

GOOD-Motif 51.75 ± 2.88% 59.36 ± 5.02% ↑ 14.7%
GOOD-HIV 59.94 ± 2.86% 62.46 ± 5.59% ↑ 4.2%

In Table 7, we compare our method with baselines on GOOD benchmark. As can be seen, most mainstream out-of-
distribution generalization methods fail under size shifts in the graph domain, while our method significantly outperforms
all baseline methods. Specifically, for GOOD-Motif, WBM achieves a performance improvement of 2.61% compared to the
best baseline CMDr. For GOOD-HIV, the performance is improved by 2.11%.

Table 7. Performance comparisons on GOOD benchmark between WBM and the baselines. Table shows the accuracy for GOOD-Motif
and ROC-AUC for GOOD-HIV of the classifiers over the test data. The best (in mean) results are highlighted in bold.

Dataset GOOD-Motif GOOD-HIV

IRM 51.41 ± 3.30 59.00 ± 2.74
VREx 52.67 ± 2.87 58.53 ± 2.22

GroupDRO 51.95 ± 2.80 58.98 ± 1.84
Deep Coral 50.97 ± 1.76 60.11 ± 3.53

Mixup 51.48 ± 3.35 59.03 ± 3.07
CMDr 56.75 ± 7.14 60.35 ± 1.99

WBM(ours) 59.36 ± 5.02 62.46 ± 5.59
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G. Additional Ablation Study
To inspect the generalization convergence rate by MPNN with and without WBM, we choose the GOOD-Motif dataset.
The GOOD-Motif is a relatively large-scale dataset which allows us to construct different training subsets based on the
graph size. We construct three splits for training, with different average graph sizes. We provide the average error rate (the
lower the better) of the validation and test sets (with larger graph size, i.e., Ns ≤ Nt) over multiple runs with GIN as the
backbone in Table 8 below. The results show that the larger the average graph size for training, the better performance an
MPNN with a WBM achieves, which implies a faster convergence rate with the presence of a WBM layer.

Table 8. The average error rate on GOOD-Motif of GIN backbone with a WBM layer and without a WBM layer.

Avg training graph size 8.21 18.33 29.81

with WBM 0.57 0.39 0.24
without WBM 0.58 0.45 0.31

We inspect using a simple softmax as a classifier of the vanilla WBM model studied in theory. We set M = 1 and we
remove the MLP layer between the WBM layer and the softmax layer) with GIN as the backbone. We provide in Table 9 the
average MCC of GIN without the vanilla WBM layer. The results are the average MCC over multiple runs. We can see that,
though the comparison is not fair for the vanilla WBM (GIN without vanilla WBM uses an MLP layer between the average
pooling layer and the softmax layer. In our analysis, we assume Lipschitz continuity of the classifier on top of the WBM
embedding), applying the vanilla WBM achieves competitive performance on four datasets.

Table 9. The average MCC of GIN with (vanilla WBM) and without (vanilla GIN) the vanilla WBM layer.

Datasets NC1 NC109 PROTEINS DD

Vanilla GIN 0.19 0.28 0.25 0.23
Vanilla WBM 0.22 0.20 0.35 0.23

We inspect the importance of enforcing a class-related semantic structure on the data clusters in the Wasserstein space.
Specifically, we model the learned template graphs explicitly as barycenters associated with various classes. We seek to
minimize the Wasserstein distance between the learned graph and the graphs of the same class, whereas OT-based methods
such as OT-GNN(Chen et al., 2020) seek to minimize the distance between the learned graph and any input graph. The
semantic constraint arises from the basic assumption that graphs sampled from the same graphon RGM belong to the same
class, and is critical for the convergence analysis from the graphon RGM perspective. To inspect the empirical effect of
imposing semantic structure on the data clusters, we conduct a complementary experiment by minimizing the W-distance of
the learned graphs against any input graph. The number of the learned graph equals C ×M . Table 10 below shows the
average MCC over multiple runs with GIN as the backbone. The performance of minimizing W-distance against all input
graphs is not satisfactory on the graph size generalization benchmarks, implying that imposing the semantic structure on the
data clusters indeed makes a large difference.

Table 10. The average MCC of a GIN of WBM and a GIN minimizing W-distance against all graphs

Datasets NC1 NC109 PROTEINS DD

WBM 0.24 0.24 0.37 0.27
min W-distance against all graphs 0.19 0.15 0.34 0.17
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H. The Algorithm of WBM

Algorithm 1 WBM: an MPNN with a Wasserstein Barycenter Matching layer
Input: Training dataset of graphs S = {xk = (Ak, fk), yk}nk=1, MPNN Θ, classifier head ϕ, batch size B, total iterations
for training Imax, trade-off hyperparameter λ, number of Wasserstein barycenters corresponding to each class M , graphon
size Ng .
Output: learned models Θ, ϕ, and Wasserstein barycenters {b̂2(Sjm)|j = 1 · · ·C,m = 1 · · ·M}.
Initialize: {b̂2(Sjm)}Mm=1 ← randomly sample M graphs of size Ng in each class j.
for I = 1 to Imax do

randomly fetch a mini-batch B from S
ℓ← 0
for each graph (x = (A, f), y) instance in B do
ν = ΘA(f)← calculate the node embeddings through the MPNN
ΘW

A (f) = (W2
2 (b̂2(S11 ), ν), · · · ,W2

2 (b̂2(S1M ), ν), · · · ,W2
2 (b̂2(SCM ), ν))← calculate the WBM embedding

ŷ = ϕ(ΘW
A (f))← classifier prediction

ℓCLS = cross− entropy(ŷ, y)← calculate the supervised classification loss
ℓWBM = 1

n

∑M
m=1W2

2 (b̂2(Sym), ν)← calculate the WBM loss
ℓ = ℓ+ ℓCLS + λℓWBM

end for
update parameters of Θ, ϕ and {b̂2(Sjm)} using ∇ℓ

end for

I. Third-party Lemmas
Lemma I.1 (Lipschitz-continuity of MPNN ΘA(f), a simplified version of Lemma B.9 in Maskey et al. (2022)). Let
(χ, d, µ) be a metric measure space and A : χ × χ → [0,+∞) be a graphon. Let Θ = ({Φ(l),Ψ(l)}Ll=1) be an L-layer
MPNN s.t. the regularity assumptions in Appendix A are satisfied. Consider an Lf -Lipschitz continuous metric-space signal
f : χ → RF with finite infinity norm ∥f∥ < ∞. Then for ℓ = 1, . . . , L, the graphon MPNN output f l is Lf l-Lipschitz
continuous and satisfying

Lf(l) ≤ Z
(l)
1 ∥f∥∞ + Z

(l)
2 Lf , (I.1)

where Zl
1 and Zl

2 are independent of f and defined as

Z
(l)
1 =

l∑
k=1

B(k−1)

(
LΨ(k)

LA

dmin
LΦ(k) + LΨ(k)∥A∥∞LΦ(k)

LA

d2min

) l∏
l′=k+1

L
Ψ(l′)

(
1 +
∥A∥∞
dmin

L
Φ(l′)

)
,

Z
(l)
2 =

l∏
k=1

LΨ(k)

(
1 +
∥A∥∞
dmin

LΦ(k)

)
,

(I.2)

where B(k) is given by

B(k) =

k∏
i=1

LΨ(i) (1 + LΦ(i)) .

Lemma I.2 (bound on the mean E(Wp(ν̂, ν)), Theorem 1 in Fournier & Guillin (2015)). Let ν ∈ P(Rd) and let p > 0.
Assume that Mq(ν) <∞ fome some q > p. There exists a constant D depending only on p, d, q such that for all N ≥ 1,

E (Wp (ν̂, ν)) ≤ DMp/q
q (ν)×


N−1/2 +N−(q−p)/q if p > d/2 and q ̸= 2p,

N−1/2 log(1 +N) +N−(q−p)/q if p = d/2 and q ̸= 2p,

N−p/d +N−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p).

(I.3)

Lemma I.3 (mean-concentration ofWp(ν̂, ν), Corollary 5.5 in Lei (2020)). For X ∼ ν, if E
(
∥X∥k

)
≤ 1

2s
2k!V k−2, for

all integer k ≥ 2 and some constants s, V , then for all t > 0

Prob [|Wp(ν̂, ν)− E(Wp(ν̂, ν))| ≥ t] ≤ 2 exp

(
− t2

8s2n1−2/p + 4V tn−1/p

)
. (I.4)
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Lemma I.4 (concentration of Wasserstein barycenters, simplified version of Theorem 12 in Le Gouic et al. (2022)). Suppose
the curvature curv(χ) is bounded from below. Fix a sub-Gaussian probability measure µ on χ and barycenter b∗. Let bn be
an empirical barycenter with n observations. For η ∈ (0, 1), then

w.p. ≥ 1− η − e−C2n W2(bn, b
∗) ≤ E

n
log(

2

η
), (I.5)

where E,C2 > 0 are constants independent of n.

Lemma I.5 (concentration of multinomial measures, Proposition A.6 in Van Der Vaart et al. (1996)). If the random vector
n = (n1, . . . , nC) is multinomially distributed with parameters n and h1, . . . , hC , then

Prob(

C∑
j=1

|nj − nhj | ≥ 2
√
nt) ≤ 2Cexp(−2t2). (I.6)

Lemma I.6 (Lipschitz-continuity of cross-entropy composed on softmax, Lemma D.1 in Maskey et al. (2022)). Denoted by
ℓCE the cross-entropy loss composed on softmax. Considering the simple binary case, ℓCE is defined by

ℓCE(x;y) = −y1 log
(

ex1

ex1 + ex2

)
− y2 log

(
ex2

ex1 + ex2

)
.

The loss ℓCE is 1=Lipschitz continuous. Additionally, ℓCE is locally bounded in the following sense:

∥LCE∥L∞([−K,K]2) ≤ log
(
1 + e2K

)
, (I.7)

where ∥LCE∥L∞([−K,K]2) = maxx∈[−K,K]2 ∥LCE(x)∥.
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